

 [image: Gretel Logo]

Gretel Synthetics

 [image: Gobs the Gretel.ai cat]

 A permissive synthetic data library from Gretel.ai

[image: Documentation Status]
 [https://gretel-synthetics.readthedocs.io/en/stable/?badge=stable][image: CLA assistant]
 [https://cla-assistant.io/gretelai/gretel-synthetics][image: PyPI]
 [https://badge.fury.io/py/gretel-synthetics][image: Python]
 [https://github.com/gretelai/gretel-synthetics][image: Downloads]
 [https://pepy.tech/project/gretel-synthetics][image: GitHub stars]
 [https://github.com/gretelai/gretel-synthetics][image: Discord]
 [https://gretel.ai/discord]
Documentation

	Get started with gretel-synthetics [https://gretel-synthetics.readthedocs.io/en/stable/]

	Configuration [https://gretel-synthetics.readthedocs.io/en/stable/api/config.html]

	Train your model [https://gretel-synthetics.readthedocs.io/en/stable/api/train.html]

	Generate synthetic records [https://gretel-synthetics.readthedocs.io/en/stable/api/generate.html]

Try it out now!

If you want to quickly discover gretel-synthetics, simply click the button below and follow the tutorials!

[image: Open in Colab]
 [https://colab.research.google.com/github/gretelai/gretel-synthetics/blob/master/examples/synthetic_records.ipynb]Check out additional examples here [https://github.com/gretelai/gretel-synthetics/tree/master/examples].

Getting Started

This section will guide you through installation of gretel-synthetics and dependencies that are not directly installed by the Python package manager.

Dependency Requirements

By default, we do not install certain core requirements, the following dependencies should be installed external to the installation
of gretel-synthetics, depending on which model(s) you plan to use.

	Tensorflow: Used by the LSTM model, we recommend version 2.11.x

	Torch: Used by Timeseries DGAN and ACTGAN (for ACTGAN, Torch is installed by SDV), we recommend version 2.0

	SDV (Synthetic Data Vault): Used by ACTGAN, we recommend version 0.17.x

These dependencies can be installed by doing the following:

pip install tensorflow==2.11 # for LSTM
pip install sdv<0.18 # for ACTGAN
pip install torch==2.0 # for Timeseries DGAN

To install the actual gretel-synthetics package, first clone the repo and then…

pip install -U .

or

pip install gretel-synthetics

then…

$ pip install jupyter
$ jupyter notebook

When the UI launches in your browser, navigate to examples/synthetic_records.ipynb and get generating!

If you want to install gretel-synthetics locally and use a GPU (recommended):

	Create a virtual environment (e.g. using conda)

$ conda create --name tf python=3.9

	Activate the virtual environment

$ conda activate tf

	Run the setup script ./setup-utils/setup-gretel-synthetics-tensorflow24-with-gpu.sh

The last step will install all the necessary software packages for GPU usage, tensorflow=2.8 and gretel-synthetics.
Note that this script works only for Ubuntu 18.04. You might need to modify it for other OS versions.

Timeseries DGAN Overview

The timeseries DGAN module [https://synthetics.docs.gretel.ai/en/stable/models/timeseries_dgan.html#timeseries-dgan] contains a PyTorch implementation of a DoppelGANger model that is optimized for timeseries data. Similar to tensorflow, you will need to manually install pytorch:

pip install torch==1.13.1

This notebook [https://github.com/gretelai/gretel-synthetics/blob/master/examples/timeseries_dgan.ipynb] shows basic usage on a small data set of smart home sensor readings.

ACTGAN Overview

ACTGAN (Anyway CTGAN) is an extension of the popular CTGAN implementation [https://sdv.dev/SDV/user_guides/single_table/ctgan.html] that provides
some additional functionality to improve memory usage, autodetection and transformation of columns, and more.

To use this model, you will need to manually install SDV:

pip install sdv<0.18

Keep in mind that this will also install several dependencies like PyTorch that SDV relies on, which may conflict with PyTorch
versions installed for use with other models like Timeseries DGAN.

The ACTGAN interface is a superset of the CTGAN interface. To see the additional features, please take a look at the ACTGAN demo notebook in the examples directory of this repo.

LSTM Overview

This package allows developers to quickly get immersed with synthetic data generation through the use of neural networks. The more complex pieces of working with libraries like Tensorflow and differential privacy are bundled into friendly Python classes and functions. There are two high level modes that can be utilized.

Simple Mode

The simple mode will train line-per-line on an input file of text. When generating data, the generator will yield a custom object that can be used a variety of different ways based on your use case. This notebook [https://github.com/gretelai/gretel-synthetics/blob/master/examples/tensorflow/simple-character-model.ipynb] demonstrates this mode.

DataFrame Mode

This library supports CSV / DataFrames natively using the DataFrame “batch” mode. This module provided a wrapper around our simple mode that is geared for working with tabular data. Additionally, it is capable of handling a high number of columns by breaking the input DataFrame up into “batches” of columns and training a model on each batch. This notebook [https://github.com/gretelai/gretel-synthetics/blob/master/examples/dataframe_batch.ipynb] shows an overview of using this library with DataFrames natively.

Components

There are four primary components to be aware of when using this library.

	Configurations. Configurations are classes that are specific to an underlying ML engine used to train and generate data. An example would be using TensorFlowConfig to create all the necessary parameters to train a model based on TF. LocalConfig is aliased to TensorFlowConfig for backwards compatibility with older versions of the library. A model is saved to a designated directory, which can optionally be archived and utilized later.

	Tokenizers. Tokenizers convert input text into integer based IDs that are used by the underlying ML engine. These tokenizers can be created and sent to the training input. This is optional, and if no specific tokenizer is specified then a default one will be used. You can find an example [https://github.com/gretelai/gretel-synthetics/blob/master/examples/tensorflow/batch-df-char-tokenizer.ipynb] here that uses a simple char-by-char tokenizer to build a model from an input CSV. When training in a non-differentially private mode, we suggest using the default SentencePiece tokenizer, an unsupervised tokenizer that learns subword units (e.g., byte-pair-encoding (BPE) [Sennrich et al. [http://www.aclweb.org/anthology/P16-1162]]) and unigram language model [Kudo. [https://arxiv.org/abs/1804.10959]]) for faster training and increased accuracy of the synthetic model.

	Training. Training a model combines the configuration and tokenizer and builds a model, which is stored in the designated directory, that can be used to generate new records.

	Generation. Once a model is trained, any number of new lines or records can be generated. Optionally, a record validator can be provided to ensure that the generated data meets any constraints that are necessary. See our notebooks for examples on validators.

Utilities

In addition to the four primary components, the gretel-synthetics package also ships with a set of utilities that are helpful for training advanced synthetics models and evaluating synthetic datasets.

Some of this functionality carries large dependencies, so they are shipped as an extra called utils. To install these dependencies, you may run

pip install gretel-synthetics[utils]

For additional details, please refer to the Utility module API docs [https://synthetics.docs.gretel.ai/en/latest/utils/index.html].

Differential Privacy

Differential privacy support for our TensorFlow mode is built on the great work being done by the Google TF team and their TensorFlow Privacy library [https://github.com/tensorflow/privacy].

When utilizing DP, we currently recommend using the character tokenizer as it will only create a vocabulary of single tokens and removes the risk of sensitive data being memorized as actual tokens that can be replayed during generation.

There are also a few configuration options that are notable such as:

	predict_batch_size should be set to 1

	dp should be enabled

	learning_rate, dp_noise_multiplier, dp_l2_norm_clip, and dp_microbatches can be adjusted to achieve various epsilon values.

	reset_states should be disabled

Please see our example Notebook [https://github.com/gretelai/gretel-synthetics/blob/master/examples/tensorflow/diff_privacy.ipynb] for training a DP model based on the Netflix Prize [https://en.wikipedia.org/wiki/Netflix_Prize] dataset.

Modules

	Config
	BaseConfig

	CONFIG_MAP

	LocalConfig

	TensorFlowConfig

	config_from_model_dir()

	Tokenizers
	Base

	BaseTokenizer

	BaseTokenizerTrainer

	CharTokenizer

	CharTokenizerTrainer

	SentencePieceColumnTokenizer

	SentencePieceColumnTokenizerTrainer

	SentencePieceTokenizer

	SentencePieceTokenizerTrainer

	TokenizerError

	VocabSizeTooSmall

	tokenizer_from_model_dir()

	Train
	EpochState

	TrainingParams

	train()

	train_rnn()

	Generate
	BaseGenerator

	GenText

	PredString

	SeedingGenerator

	Settings

	gen_text

	generate_text()

	Batch
	Batch

	DataFrameBatch

	GenerationProgress

	GenerationResult

	GenerationSummary

	RecordFactory

	Utils
	Stats

	Header Clusters

	Timeseries DGAN
	DGANConfig

	DfStyle

	Normalization

	OutputType

	DGAN

	find_max_consecutive_nans()

	nan_linear_interpolation()

	validation_check()

	ACTGAN
	ACTGAN

	ColumnIdInfo

	ColumnTransformInfo

	ColumnType

	ConditionalVectorType

	EpochInfo

Indices and tables

	Index

	Module Index

	Search Page

Config

This module provides a set of dataclasses that can be used to hold all necessary
confguration parameters for training a model and generating data.

For example usage please see our Jupyter Notebooks.

	
class gretel_synthetics.config.BaseConfig(input_data_path: str | None = None, validation_split: bool = True, checkpoint_dir: str | None = None, training_data_path: str | None = None, field_delimiter: str | None = None, field_delimiter_token: str = '<d>', model_type: str | None = None, max_lines: int = 0, overwrite: bool = False, epoch_callback: Callable | None = None, max_training_time_seconds: int | None = None, vocab_size: int = 20000, character_coverage: float = 1.0, pretrain_sentence_count: int = 1000000, max_line_len: int = 2048)

	This class should not be used directly, engine specific
classes should derived from this class.

	
as_dict()

	Serialize the config attrs to a dict

	
checkpoint_dir: str = None

	Directory where model data will
be stored, user provided.

	
epoch_callback: Callable | None = None

	Callback to be invoked at the end of each epoch. It will be invoked with an EpochState instance
as its only parameter. NOTE that the callback is deleted when save_model_params is called, we do not
attempt to serialize it to JSON.

	
field_delimiter: str | None = None

	If the input data is structured, you may specify a field delimiter which can
be used to split the generated text into a list of strings. For more detail
please see the GenText class in the generate.py module.

	
field_delimiter_token: str = '<d>'

	Depending on the tokenizer used, a special token can be used to represent
characters. For tokenizers, like SentencePiece that support this, we will replace
the field delimiter char with this token to provide better learning and generation.
If the tokenizer used does not support custom tokens, this value will be ignored

	
abstract get_generator_class() → None

	This must be implemented by all specific
configs. It should return the class that should
be used as the Generator for creating records.

	
abstract get_training_callable() → Callable

	This must be implemented by all specific
configs. It should return a callable that
should be used as the entrypoint for
training a model.

	
gpu_check()

	Optionally do a GPU check and warn if
a GPU is not available, if not overridden,
do nothing

	
input_data_path: str = None

	Path to raw training data, user provided.

	
max_lines: int = 0

	The maximum number of lines to utilize from the
raw input data.

	
max_training_time_seconds: int | None = None

	If set, training will cease after the number of seconds
specified elapses. This timeout will be evaluated after each
epoch.

	
model_type: str = None

	A string version of the model config class. This is used
to keep track of what underlying engine was used when
writing the config to a file. This will be automatically updated
during construction.

	
overwrite: bool = False

	Set to True to automatically overwrite previously saved model checkpoints.
If False, the trainer will generate an error if checkpoints exist in the model directory.
Default is False.

	
training_data_path: str = None

	Where annotated and tokenized training data will be stored. This attr
will be modified during construction.

	
validation_split: bool = True

	Use a fraction of the training data as validation data.
Use of a validation set is recommended as it helps prevent
over-fitting and memorization.
When enabled, 20% of data will be used for validation.

	
gretel_synthetics.config.CONFIG_MAP = {'TensorFlowConfig': <class 'gretel_synthetics.config.TensorFlowConfig'>}

	A mapping of configuration subclass string names to their actual classes. This
can be used to re-instantiate a config from a serialized state.

	
gretel_synthetics.config.LocalConfig

	alias of TensorFlowConfig

	
class gretel_synthetics.config.TensorFlowConfig(input_data_path: str | None = None, validation_split: bool = True, checkpoint_dir: str | None = None, training_data_path: str | None = None, field_delimiter: str | None = None, field_delimiter_token: str = '<d>', model_type: str | None = None, max_lines: int = 0, overwrite: bool = False, epoch_callback: Callable | None = None, max_training_time_seconds: int | None = None, vocab_size: int = 20000, character_coverage: float = 1.0, pretrain_sentence_count: int = 1000000, max_line_len: int = 2048, epochs: int = 100, early_stopping: bool = True, early_stopping_patience: int = 5, best_model_metric: str | None = None, early_stopping_min_delta: float = 0.001, batch_size: int = 64, buffer_size: int = 10000, seq_length: int = 100, embedding_dim: int = 256, rnn_units: int = 256, learning_rate: float = 0.01, dropout_rate: float = 0.2, rnn_initializer: str = 'glorot_uniform', dp: bool = False, dp_noise_multiplier: float = 0.1, dp_l2_norm_clip: float = 3.0, dp_microbatches: int = 1, gen_temp: float = 1.0, gen_chars: int = 0, gen_lines: int = 1000, predict_batch_size: int = 64, reset_states: bool = True, save_all_checkpoints: bool = False, save_best_model: bool = True)

	TensorFlow config that contains all of the main parameters for
training a model and generating data.

	Parameters:

	
	epochs (optional) – Number of epochs to train the model. An epoch is an iteration over the entire
training set provided. For production use cases, 15-50 epochs are recommended.
The default is 100 and is intentionally set extra high. By default, early_stopping
is also enabled and will stop training epochs once the model is no longer improving.

	early_stopping (optional) – deduce when the model is no longer improving and terminating training.

	early_stopping_patience (optional) – in the model. After this number of epochs, training will terminate.

	best_model_metric (optional) – The metric to use to track when a model is no longer improving. Alternative options are “val_acc”
or “acc”. A error will be raised if a valid value is not specified.

	early_stopping_min_delta (optional) – as an improvement, i.e. an absolute change of less than min_delta will count as no improvement.

	batch_size (optional) – Number of samples per gradient update. Using larger batch sizes can help
make more efficient use of CPU/GPU parallelization, at the cost of memory.
If unspecified, batch_size will default to 64.

	buffer_size (optional) – Buffer size which is used to shuffle elements during training.
Default size is 10000.

	seq_length (optional) – The maximum length sentence we want for a single training input in
characters. Note that this setting is different than max_line_length, as seq_length
simply affects the length of the training examples passed to the neural network to
predict the next token. Default size is 100.

	embedding_dim (optional) – Vector size for the lookup table used in the neural network
Embedding layer that maps the numbers of each character. Default size is 256.

	rnn_units (optional) – Positive integer, dimensionality of the output space for LSTM layers.
Default size is 256.

	dropout_rate (optional) – Float between 0 and 1. Fraction of the units to drop for the
linear transformation of the inputs. Using a dropout can help to prevent overfitting
by ignoring randomly selected neurons during training. 0.2 (20%) is often used as a good
compromise between retaining model accuracy and preventing overfitting. Default is 0.2.

	rnn_initializer (optional) – Initializer for the kernal weights matrix, used for the linear
transformation of the inputs. Default is glorot_transform.

	dp (optional) – If True, train model with differential privacy enabled. This setting provides
assurances that the models will encode general patterns in data rather than facts
about specific training examples. These additional guarantees can usefully strengthen
the protections offered for sensitive data and content, at a small loss in model
accuracy and synthetic data quality. The differential privacy epsilon and delta values
will be printed when training completes. Default is False.

	learning_rate (optional) – The higher the learning rate, the more that each update during
training matters. Note: When training with differential privacy enabled,
if the updates are noisy (such as when the additive noise is large
compared to the clipping threshold), a low learning rate may help with training.
Default is 0.01.

	dp_noise_multiplier (optional) – The amount of noise sampled and added to gradients during
training. Generally, more noise results in better privacy, at the expense of
model accuracy. Default is 0.1.

	dp_l2_norm_clip (optional) – The maximum Euclidean (L2) norm of each gradient is applied to
update model parameters. This hyperparameter bounds the optimizer’s sensitivity to
individual training points. Default is 3.0.

	dp_microbatches (optional) – Each batch of data is split into smaller units called micro-batches.
Computational overhead can be reduced by increasing the size of micro-batches to include
more than one training example. The number of micro-batches should divide evenly into
the overall batch_size. Default is 1.

	gen_temp (optional) – Controls the randomness of predictions by scaling the logits before
applying softmax. Low temperatures result in more predictable text. Higher temperatures
result in more surprising text. Experiment to find the best setting. Default is 1.0.

	gen_chars (optional) – Maximum number of characters to generate per line. Default is 0 (no limit).

	gen_lines (optional) – Maximum number of text lines to generate. This function is used by
generate_text and the optional line_validator to make sure that all lines created
by the model pass validation. Default is 1000.

	predict_batch_size (optional) – How many words to generate in parallel. Higher values may result in increased
throughput. The default of 64 should provide reasonable performance for most users.

	reset_states (optional) – Reset RNN model states between each record created guarantees more
consistent record creation over time, at the expense of model accuracy. Default is True.

	save_all_checkpoints (optional) – which can be useful for optimal model selection. Set to False to save only the latest
checkpoint. Default is True.

	save_best_model (optional). Defaults to True. Track the best version of the model (checkpoint) – If save_all_checkpoints is disabled, then the saved model will be overwritten by newer ones only if they
are better.

	
get_generator_class()

	This must be implemented by all specific
configs. It should return the class that should
be used as the Generator for creating records.

	
get_training_callable()

	This must be implemented by all specific
configs. It should return a callable that
should be used as the entrypoint for
training a model.

	
gpu_check()

	Optionally do a GPU check and warn if
a GPU is not available, if not overridden,
do nothing

	
gretel_synthetics.config.config_from_model_dir(model_dir: str) → BaseConfig

	Factory that will take a known directory of a model
and return a class instance for that config. We automatically
try and detect the correct BaseConfig sub-class to use based
on the saved model params.

If there is no model_type param in the saved config, we
assume that the model was saved using an earlier version of the
package and will instantiate a TensorFlowConfig

Tokenizers

Interface definitions for tokenizers. The classes in the module are segmented into two abstract types:
Trainers and Tokenizers. They are kept separate because the parameters used to train a tokenizer
are not necessarily loaded back in and utilized by a trained tokenizer. While its more explicit
to utilize two types of classes, it also removes any ambiguity in which methods are able to be used
based on training or tokenizing.

Trainers require a specific configuration to be provided. Based on the configuration received, the
tokenizer trainers will create the actual training data file that will be used by the downstream
training process. In this respect, utilizing at least one of these tokenizers is required for
training since it is the tokenizers responsbility to create the final training data to be used.

The general process that is followed when using these tokenizers is:

Create a trainer instance, with desired parameters, including providing the config as a required param.

Call the annotate_data for your tokenizer trainer. What is important to note here
is that this method actually iterates the input data line by line, and does any special processing, then
writes a new data file that will be used for actual training. This new data file is written to the
model directory.

Call the train method, which will create your tokenization model and save it to the model
directory.

Now you will use the load() class method from an actual tokenizer class to load that
trained model in and now you can use it on input data.

	
class gretel_synthetics.tokenizers.Base

	High level base class for shared class attrs and validation. Should not
be used directly.

	
class gretel_synthetics.tokenizers.BaseTokenizer(model_data: Any, model_dir: str)

	Base class for loading a tokenizer from disk. Should not be
used directly.

	
decode_from_ids(ids: List[int]) → str

	Given a list of token IDs, convert it to
a single string that would be the original string
it was.

Note

We automatically call a method that can optionally
restore any special reserved tokens back to their
original values (such as field delimiter values, etc)

	
encode_to_ids(data: str) → List[int]

	Given an input string, convert it to a list of
token IDs

	
abstract classmethod load(model_dir: str)

	Given a directory to a model, load the specific tokenizer
model into an instance. Subclasses should implement this logic
specific to how they need to load a model back in

	
abstract property total_vocab_size

	Return the total count of unique tokens in the vocab, specific
to the underlying tokenizer to be used.

	
class gretel_synthetics.tokenizers.BaseTokenizerTrainer(*, config: None, vocab_size: int | None = None)

	Base class for training tokenizers. Should not be used directly.

	
annotate_data() → Iterator[str]

	This should be called _before_ training as it is required
to have the annotated training data created in the model
directory.

Read in the configurations raw input data path, and
create a file I/O pipeline where each line of the input
data path can optionally route through an annotation
function and then we will write each raw line out into
a training data file as specified by the config.

	
config: None

	A subclass instace of BaseConfig. This will be used to find the input
data for tokenization

	
data_iterator() → Iterator[str]

	Create a generator that will iterate each line of the training
data that was created during the annotation step. Synthetic model trainers
will most likely need to iterate this to process each line of the annotated
training data.

	
num_lines: int = 0

	The number of lines that were processed after create_annotated_training_data
is called

	
train()

	Train a tokenizer and save the tokenizer settings to a file
located in the model directory specified by the config object

	
vocab_size: int

	The max size of the vocab (tokens) to be extracted from
the input dataset.

	
class gretel_synthetics.tokenizers.CharTokenizer(model_data: Any, model_dir: str)

	Load a simple character tokenizer from disk to conduct
encoding an decoding operations

	
classmethod load(model_dir: str)

	Create an instance of this tokenizer.

	Parameters:

	model_dir – The path to the model directory

	
property total_vocab_size

	Get the number of unique characters (tokens)

	
class gretel_synthetics.tokenizers.CharTokenizerTrainer(*, config: None, vocab_size: int | None = None)

	Train a simple tokenizer that maps every single character
to a unique ID. If vocab_size is not specified, the learned
vocab size will be the number of unique characters in the training
dataset.

	Parameters:

	vocab_size – Max number of tokens (chars) to map to tokens.

	
class gretel_synthetics.tokenizers.SentencePieceColumnTokenizer(sp: SentencePieceProcessor, model_dir: str)

	

	
class gretel_synthetics.tokenizers.SentencePieceColumnTokenizerTrainer(col_pattern: str = '<col{}>', **kwargs)

	

	
class gretel_synthetics.tokenizers.SentencePieceTokenizer(model_data: Any, model_dir: str)

	Load a SentencePiece tokenizer from disk so encoding / decoding
can be done

	
classmethod load(model_dir: str)

	Load a SentencePiece tokenizer from a model directory.

	Parameters:

	model_dir – The model directory.

	
property total_vocab_size

	The number of unique tokens in the model

	
class gretel_synthetics.tokenizers.SentencePieceTokenizerTrainer(*, character_coverage: float = 1.0, pretrain_sentence_count: int = 1000000, max_line_len: int = 2048, **kwargs)

	Train a tokenizer using Google SentencePiece.

	
character_coverage: float

	The amount of characters covered by the model. Unknown characters
will be replaced with the <unk> tag. Good defaults are 0.995 for languages with rich
character sets like Japanese or Chinese, and 1.0 for other languages or machine data.
Default is 1.0.

	
max_line_line: int

	Maximum line length for input training data. Any lines longer than
this length will be ignored. Default is 2048.

	
pretrain_sentence_count: int

	The number of lines spm_train first loads. Remaining lines are simply
discarded. Since spm_train loads entire corpus into memory, this size will depend on the memory
size of the machine. It also affects training time. Default is 1000000.

	
vocab_size: int

	Pre-determined maximum vocabulary size prior to neural model training, based
on subword units including byte-pair-encoding (BPE) and unigram language model,
with the extension of direct training from raw sentences.
We generally recommend using a large vocabulary size of
20,000 to 50,000. Default is 20000.

	
exception gretel_synthetics.tokenizers.TokenizerError

	

	
exception gretel_synthetics.tokenizers.VocabSizeTooSmall

	Error that is raised when the vocab_size is too small for the given data.
This happens, when the vocab_size is set to a value that is smaller than the
number of required characters.

	
gretel_synthetics.tokenizers.tokenizer_from_model_dir(model_dir: str) → BaseTokenizer

	A factory function that will return a tokenizer instance that
can be used for encoding / decoding data. It will try to automatically
infer what type of class to use based on the stored tokenizer params
in the provided model directory.

If no specific tokenizer type is found, we assume that we are restoring
a SentencePiece tokenizer because the model is from a version <=
0.14.x

	Parameters:

	model_dir – A directory that holds synthetic model data.

Train

Train models for creating synthetic data. This module is the primary entrypoint for creating
a model. It depends on having created a engine specifc configuration and optionally a tokenizer
to be used.

	
class gretel_synthetics.train.EpochState(epoch: int, accuracy: float | None = None, loss: float | None = None, val_accuracy: float | None = None, val_loss: float | None = None, batch: int | None = None, epsilon: float | None = None, delta: float | None = None)

	Training state passed to the epoch callback on BaseConfig at the end of each epoch.

	
class gretel_synthetics.train.TrainingParams(tokenizer_trainer: None, tokenizer: None, config: None)

	A structure that is created and passed into the engine-specific training
entrypoint. All engine-specific training entrypoints should expect to receive
this object and process accordingly.

	
gretel_synthetics.train.train(store: None, tokenizer_trainer: None = None)

	Train a Synthetic Model. This is a facade entrypoint that implements the engine
specific training operation based on the provided configuration.

	Parameters:

	
	store – A subclass instance of BaseConfig. This config is reponsible for
providing the actual training entrypoint for a specific training routine.

	tokenizer_trainer – An optional subclass instance of a BaseTokenizerTrainer. If provided
this tokenizer will be used to pre-process and create an annotated dataset for training.
If not provided a default tokenizer will be used.

	
gretel_synthetics.train.train_rnn(store: None)

	Facade to support backwards compatibility for <= 0.14.x versions.

Generate

Abstract module for generating data. The generate_text function is the primary entrypoint for
creating text.

	
class gretel_synthetics.generate.BaseGenerator

	Do not use directly.

Specific generation modules should have a
subclass of this ABC that implements the core logic
for generating data

	
class gretel_synthetics.generate.GenText(valid: bool = None, text: str = None, explain: str = None, delimiter: str = None)

	

	
gretel_synthetics.generate.PredString

	alias of pred_string

	
class gretel_synthetics.generate.SeedingGenerator(config: None, *, seed_list: List[str], line_validator: Callable | None = None, max_invalid: int = 1000)

	A single threaded line / text generator that is specifically
for using with a list of seeds. This also exposes the Settings
class back to the caller so the actual seed list can be directly
accessed, which controls the underlying progression of the
main text generator.

This is useful when you need to manipulate the actual seed list
as data is being generated.

	
class gretel_synthetics.generate.Settings(config: None, start_string: str | List[str] | None = None, multi_seed: bool = False, line_validator: Callable | None = None, max_invalid: int = 1000, tokenizer: BaseTokenizer | None = None, generator: BaseGenerator | None = None)

	Do not use directly.

Arguments for a generator generating lines of text.

This class contains basic settings for a generation process. It is separated from the Generator class
for ensuring reliable serializability without an excess amount of code tied to it.

This class also will take a provided start string and validate that it can be utilized for text
generation. If the start_string is something other than the default, we have to do a couple things:

	If the config utilizes a field delimiter, the start_string MUST end with that delimiter

	Convert the user-facing delim char into the special delim token specified in the config

	
class gretel_synthetics.generate.gen_text(valid: bool | None = None, text: str | None = None, explain: str | None = None, delimiter: str | None = None)

	A record that is yielded from the Generator.generate_next generator.

	
valid

	True, False, or None. If the line passed a validation function,
then this will be True. If the validation function raised an exception
then this will be automatically set to False. If no validation function
is used, then this value will be None.

	Type:

	bool

	
text

	The actual record as a string

	Type:

	str

	
explain

	A string that describes why a record failed validation. This is the
string representation of the Exception that is thrown in a validation
function. This will only be set if validation fails, otherwise will be None.

	Type:

	str

	
delimiter

	If the generated text are column/field based records. This will hold the delimiter
used to separate the fields from each other.

	Type:

	str

	
as_dict() → dict

	Serialize the generated record to a dictionary

	
values_as_list() → List[str] | None

	Attempt to split the generated text on the provided delimiter

	Returns:

	A list of values that are separated by the object’s delimiter or None is there
is no delimiter in the text

	
gretel_synthetics.generate.generate_text(config: None, start_string: str | List[str] | None = None, line_validator: Callable | None = None, max_invalid: int = 1000, num_lines: int | None = None, parallelism: int = 0) → Iterator[GenText]

	A generator that will load a model and start creating records.

	Parameters:

	
	config – A configuration object, which you must have created previously

	start_string – A prefix string that is used to seed the record generation.
By default we use a newline, but you may substitue any initial value here
which will influence how the generator predicts what to generate. If you
are working with a field delimiter, and you want to seed more than one column
value, then you MUST utilize the field delimiter specified in your config.
An example would be “foo,bar,baz,”. Also, if using a field delimiter, the string
MUST end with the delimiter value.

Note

This param may also be a list of prefixes. If this is provided, then
the generator will attempt to create exactly 1 record for each seed in the
list. The num_lines param will be implicity set to the size of the list
and this number of records will be created at a 1:1 ratio between prefix strings
and valid records.

	line_validator – An optional callback validator function that will take
the raw string value from the generator as a single argument. This validator
can executue arbitrary code with the raw string value. The validator function
may return a bool to indicate line validity. This boolean value will be set
on the yielded gen_text object. Additionally, if the validator throws an
exception, the gen_text object will be set with a failed validation. If the
validator returns None, we will assume successful validation.

	max_invalid – If using a line_validator, this is the maximum number of invalid
lines to generate. If the number of invalid lines exceeds this value a RunTimeError
will be raised.

	num_lines – If not None, this will override the gen_lines value that is provided in the config.
.. note:

If ``start_string`` is a list, this value will be set to the length of that list and any other
values for the param are ignored.

	parallelism – The number of concurrent workers to use. 1 (the default) disables parallelization,
while a non-positive value means “number of CPUs + x” (i.e., use 0 for using as many workers
as there are CPUs). A floating-point value is interpreted as a fraction of the available CPUs,
rounded down.

Simple validator example:

def my_validator(raw_line: str):
 parts = raw_line.split(',')
 if len(parts) != 5:
 raise Exception('record does not have 5 fields')

Note

gen_lines from the config is important for this function. If a line validator is not provided,
each line will count towards the number of total generated lines. When the total lines generated is >=
gen_lines we stop. If a line validator is provided, only valid lines will count towards
the total number of lines generated. When the total number of valid lines generated is >= gen_lines,
we stop.

Note

gen_chars, controls the possible maximum number of characters a single
generated line can have. If a newline character has not been generated before reaching
this number, then the line will be returned. For example if gen_chars is 180 and a
newline has not been generated, once 180 chars have been created, the line will be returned
no matter what. As a note, if this value is 0, then each line will generate until
a newline is observed.

	Yields:

	A GenText object for each record that is generated. The generator
will stop after the max number of lines is reached (based on your config).

	Raises:

	A RunTimeError if the max_invalid number of lines is generated –

Batch

This module allows automatic splitting of a DataFrame
into smaller DataFrames (by clusters of columns) and doing
model training and text generation on each sub-DF independently.

Then we can concat each sub-DF back into one final synthetic dataset.

For example usage, please see our Jupyter Notebook.

	
class gretel_synthetics.batch.Batch(checkpoint_dir: str, input_data_path: str, headers: List[str], config: TensorFlowConfig, gen_data_count: int = 0)

	A representation of a synthetic data workflow. It should not be used
directly. This object is created automatically by the primary batch handler,
such as DataFrameBatch. This class holds all of the necessary information
for training, data generation and DataFrame re-assembly.

	
add_valid_data(data: GenText)

	Take a gen_text object and add the generated
line to the generated data stream

	
get_validator()

	If a custom validator is set, we return that. Otherwise,
we return the built-in validator, which simply checks if a generated
line has the right number of values based on the number of headers
for this batch.

This at least makes sure the resulting DataFrame will be the right
shape

	
load_validator_from_file()

	Load a saved validation object if it exists

	
reset_gen_data()

	Reset all objects that accumulate or track synthetic
data generation

	
set_validator(fn: Callable, save=True)

	Assign a validation callable to this batch. Optionally
pickling and saving the validator for loading later

	
property synthetic_df: DataFrame

	Get a DataFrame constructed from the generated lines

	
class gretel_synthetics.batch.DataFrameBatch(*, df: DataFrame | None = None, batch_size: int = 15, batch_headers: List[List[str]] | None = None, config: dict | BaseConfig | None = None, tokenizer: BaseTokenizerTrainer | None = None, mode: str = 'write', checkpoint_dir: str | None = None, validate_model: bool = True)

	Create a multi-batch trainer / generator. When created, the directory
structure to store models and training data will automatically be created.
The directory structure will be created under the “checkpoint_dir” location
provided in the config template. There will be one directory per batch,
where each directory will be called “batch_N” where N is the batch number, starting
from 0.

Training and generating can happen per-batch or we can loop over all batches to
do both train / generation functions.

Example

When creating this object, you must explicitly create the training data
from the input DataFrame before training models:

my_batch = DataFrameBatch(df=my_df, config=my_config)
my_batch.create_training_data()
my_batch.train_all_batches()

	Parameters:

	
	df – The input, source DataFrame

	batch_size – If batch_headers is not provided we automatically break up
the number of columns in the source DataFrame into batches of N columns.

	batch_headers – A list of lists of strings can be provided which will control
the number of batches. The number of inner lists is the number of batches, and each
inner list represents the columns that belong to that batch

	config – A template training config to use, this will be used as kwargs for each Batch’s
synthetic configuration. This may also be a sucblass of BaseConfig. If this is used,
you can set the input_data_path param to the constant PATH_HOLDER as it does not
really matter

	tokenizer_class – An optional BaseTokenizerTrainer subclass. If not provided the default
tokenizer will be used for the underlying ML engine.

Note

When providing a config, the source of training data is not necessary, only the
checkpoint_dir is needed. Each batch will control its input training data path
after it creates the training dataset.

	
batch_size: int

	The max number of columns allowed for a single DF batch

	
batch_to_df(batch_idx: int) → DataFrame

	Extract a synthetic data DataFrame from a single batch.

	Parameters:

	batch_idx – The batch number

	Returns:

	A DataFrame with synthetic data

	
batches: Dict[int, Batch]

	A mapping of Batch objects to a batch number. The batch number (key)
increments from 0..N where N is the number of batches being used.

	
batches_to_df() → DataFrame

	Convert all batches to a single synthetic data DataFrame.

	Returns:

	A single DataFrame that is the concatenation of all the
batch DataFrames.

	
config: dict | BaseConfig

	The template config that will be used for all batches. If a dict
is provided we default to a TensorFlowConfig.

	
create_training_data()

	Split the original DataFrame into N smaller DataFrames. Each
smaller DataFrame will have the same number of rows, but a subset
of the columns from the original DataFrame.

This method iterates over each Batch object and assigns
a smaller training DataFrame to the training_df attribute
of the object.

Finally, a training CSV is written to disk in the specific
batch directory

	
generate_all_batch_lines(max_invalid=1000, raise_on_failed_batch: bool = False, num_lines: int | None = None, seed_fields: dict | List[dict] | None = None, parallelism: int = 0) → Dict[int, GenerationSummary]

	Generate synthetic lines for all batches. Lines for each batch
are added to the individual Batch objects. Once generateion is
done, you may re-assemble the dataset into a DataFrame.

Example:

my_batch.generate_all_batch_lines()
Wait for all generation to complete
synthetic_df = my_batch.batches_to_df()

	Parameters:

	
	max_invalid – The number of invalid lines, per batch. If this number
is exceeded for any batch, generation will stop.

	raise_on_failed_batch – If True, then an exception will be raised if any single batch
fails to generate the requested number of lines. If False, then the failed batch
will be set to False in the result dictionary from this method.

	num_lines – The number of lines to create from each batch. If None then the value
from the config template will be used.

Note

Will be overridden / ignored if seed_fields is a list. Will be set to the len of the list.

	seed_fields – A dictionary that maps field/column names to initial seed values for those columns. This seed
will only apply to the first batch that gets trained and generated. Additionally, the fields provided
in the mapping MUST exist at the front of the first batch.

Note

This param may also be a list of dicts. If this is the case, then num_lines will automatically
be set to the list length downstream, and a 1:1 ratio will be used for generating valid lines for
each prefix.

	parallelism – The number of concurrent workers to use. 1 (the default) disables parallelization,
while a non-positive value means “number of CPUs + x” (i.e., use 0 for using as many workers
as there are CPUs). A floating-point value is interpreted as a fraction of the available CPUs,
rounded down.

	Returns:

	A dictionary of batch number to a dictionary that reports the number of valid, invalid lines and bool value
that shows if each batch was able to generate the full number of requested lines:

{
 0: GenerationSummary(valid_lines=1000, invalid_lines=10, is_valid=True),
 1: GenerationSummary(valid_lines=500, invalid_lines=5, is_valid=True)
}

	
generate_batch_lines(batch_idx: int, max_invalid=1000, raise_on_exceed_invalid: bool = False, num_lines: int | None = None, seed_fields: dict | List[dict] | None = None, parallelism: int = 0) → GenerationSummary

	Generate lines for a single batch. Lines generated are added
to the underlying Batch object for each batch. The lines
can be accessed after generation and re-assembled into a DataFrame.

	Parameters:

	
	batch_idx – The batch number

	max_invalid – The max number of invalid lines that can be generated, if
this is exceeded, generation will stop

	raise_on_exceed_invalid – If true and if the number of lines generated exceeds the max_invalid
amount, we will re-raise the error thrown by the generation module which will interrupt
the running process. Otherwise, we will not raise the caught exception and just return False
indicating that the batch failed to generate all lines.

	num_lines – The number of lines to generate, if None, then we use the number from the
batch’s config

	seed_fields – A dictionary that maps field/column names to initial seed values for those columns. This seed
will only apply to the first batch that gets trained and generated. Additionally, the fields provided
in the mapping MUST exist at the front of the first batch.

Note

This param may also be a list of dicts. If this is the case, then num_lines will automatically
be set to the list length downstream, and a 1:1 ratio will be used for generating valid lines for
each prefix.

	parallelism – The number of concurrent workers to use. 1 (the default) disables parallelization,
while a non-positive value means “number of CPUs + x” (i.e., use 0 for using as many workers
as there are CPUs). A floating-point value is interpreted as a fraction of the available CPUs,
rounded down.

	
master_header_list: List[str]

	During training, this is the original column order. When reading from
disk, we concatenate all headers from all batches together. This list is not
guaranteed to preserve the original header order.

	
original_headers: List[str]

	Stores the original header list / order from the original training data that was used.
This is written out to the model directory during training and loaded back in when
using read-only mode.

	
set_batch_validator(batch_idx: int, validator: Callable)

	Set a validator for a specific batch. If a validator is configured
for a batch, each generated record from that batch will be sent
to the validator.

	Parameters:

	
	batch_idx – The batch number .

	validator – A callable that should take exactly one argument,
which will be the raw line generated from the generate_text
function.

	
train_all_batches()

	Train a model for each batch.

	
train_batch(batch_idx: int)

	Train a model for a single batch. All model information will
be written into that batch’s directory.

	Parameters:

	batch_idx – The index of the batch, from the batches dictionary

	
class gretel_synthetics.batch.GenerationProgress(current_valid_count: int = 0, current_invalid_count: int = 0, new_valid_count: int = 0, new_invalid_count: int = 0, completion_percent: float = 0.0, timestamp: float = <factory>)

	This class should not have to be used directly.

It is used to communicate the current progress of record generation.

When a callback function is passed to the RecordFactory.generate_all() method,
each time the callback is called an instance of this class will be passed
as the single argument:

def my_callback(data: GenerationProgress):
 ...

factory: RecordFactory
df = factory.generate_all(output="df", callback=my_callback)

This class is used to periodically communicate progress of generation to the user,
through a callback that can be passed to RecordFactory.generate_all() method.

	
completion_percent: float = 0.0

	The percentage of valid lines/records that have been generated.

	
current_invalid_count: int = 0

	The number of invalid lines/records that
were generated so far.

	
current_valid_count: int = 0

	The number of valid lines/records that
were generated so far.

	
new_invalid_count: int = 0

	The number of new valid lines/records that
were generated since the last progress callback.

	
new_valid_count: int = 0

	The number of new valid lines/records that
were generated since the last progress callback.

	
timestamp: float

	The timestamp from when the information in this object has been captured.

	
class gretel_synthetics.batch.GenerationResult(records: pandas.core.frame.DataFrame | List[dict], exception: Exception | None = None)

	

	
class gretel_synthetics.batch.GenerationSummary(valid_lines: int = 0, invalid_lines: int = 0, is_valid: bool = False)

	A class to capture the summary data after synthetic data is generated.

	
class gretel_synthetics.batch.RecordFactory(*, num_lines: int, batches: dict, header_list: list, delimiter: str, seed_fields: dict | list | None = None, max_invalid=1000, validator: Callable | None = None, parallelism: int = 4, invalid_cache_size: int = 100)

	A stateful factory that can be used to generate and validate entire
records, regardless of the number of underlying header clusters that were
used to build multiple sub-models.

Instances of this class should be created by calling the appropiate method
of the DataFrameBatch instance. This class should not have to
be used directly. You should be able to create an instance like so:

factory = batcher.create_record_factory(num_lines=50)

The class is init’d with default capacity and limits as specified
by the num_lines and max_invalid attributes. At any time,
you can inspect the state of the instance by doing:

factory.summary

The factory instance can be used one of two ways: buffered or unbuffered.

For unbuffered mode, the entire instance can be used as an iterator to
create synthetic records. Each record will be a dictionary.

Note

All values in the generated dictionaries will be strings.

The valid_count and invalid_count counters will update as
records are generated.

When creating the record factory, you may also provide an entire
record validator:

def validator(rec: dict):
 ...

factory = batcher.create_record_factory(num_lines=50, validator=validator)

Each generated record dict will be passed to the validator. This validator may either
return False or raise an exception to mark a record as invalid.

At any point, you may reset the state of the factory by calling:

factory.reset()

This will reset all counters and allow you to keep generating records.

Finally, you can generate records in buffered mode, where generated records
will be buffered in memory and returned as one collection. By default, a list
of dicts will be returned:

factory.generate_all()

You may request the records to be returned as a DataFrame. The dtypes will
be inferred as if you were reading the data from a CSV:

factory.generate_all(output="df")

Note

When using generate_all, the factory states will be reset automatically.

	
generate_all(output: str | None = None, callback: callable | None = None, callback_interval: int = 30, callback_threading: bool = False) → GenerationResult

	Attempt to generate the full number of records that was set when
creating the RecordFactory. This method will create a buffer
that holds all records and then returns the the buffer once
generation is complete.

	Parameters:

	
	output – How the records should be returned. If None, which is the
default, then a list of record dicts will be returned. Other options
that are supported are: ‘df’ for a DataFrame.

	callback – An optional callable that will periodically be called with
a GenerationProgress instance as the single argument while
records are being generated.

	callback_interval – If using a callback, the minimum number of seconds that
should occur between callbacks.

	callback_threading – If enabled, a watchdog thread will be used to execute
the callback. This will ensure that the callback is called regardless
of invalid or valid counts. If callback threading is disabled, the callback
will only be called after valid records are generated. If the callback
raises and exception, then a threading event will be set which will trigger
the stopping of generation.

	Returns:

	Generated records in an object that is dependent on the output param. By default
this will be a list of dicts.

	
validator: Callable

	An optional callable that will receive a fully constructed record for one
final validation before returning or yielding a single record. Records that
do not pass this validation will also increment the invalid_count.

Utils

The utils module provides a number of different methods that are useful for training and working with synthetic data.

Some of these methods carry heavy dependencies such as scikit-learn. To prevent adding unnecessary requirements to the main gretel-synthetics package, util dependencies are shipped under an extra called, utils. To install the utils extra, you may run

pip install -U gretel-synthetics[utils]

	Stats
	calculate_correlation()

	calculate_correlation_ratio()

	calculate_pearsons_r()

	calculate_theils_u()

	compute_distribution_distance()

	compute_pca()

	count_memorized_lines()

	get_categorical_field_distribution()

	get_numeric_distribution_bins()

	get_numeric_field_distribution()

	normalize_dataset()

	Header Clusters
	cluster()

Stats

Generates correlation reports between data sets.

	
gretel_synthetics.utils.stats.calculate_correlation(df: DataFrame, nominal_columns: List[str] | None = None, job_count: int = 4, opt: bool = False) → DataFrame

	Given a dataframe, calculate a matrix of the correlations between the various rows. We use the
calculate_pearsons_r, calculate_correlation_ratio and calculate_theils_u to fill in the matrix values.

	Parameters:

	
	df – The input dataframe.

	nominal_columns – Columns to treat as categorical.

	job_count – For parallelization of computations.

	opt – “optimized.” If opt is True, then go the faster (just not quite as accurate) route of global
replace missing with 0.

	Returns:

	A dataframe of correlation values.

	
gretel_synthetics.utils.stats.calculate_correlation_ratio(x, y, opt)

	Calculates the Correlation Ratio for categorical-continuous association. Used in constructing correlation matrix.
See http://shakedzy.xyz/dython/modules/nominal/#correlation_ratio.

	Parameters:

	
	x – first input array, categorical.

	y – second input array, numeric.

	opt – “optimized.” If False, drop missing values if y (the numeric column) is null/nan.

	Returns:

	float in the range of [0,1].

	
gretel_synthetics.utils.stats.calculate_pearsons_r(x, y, opt) → Tuple[float, float]

	Calculate the Pearson correlation coefficient for this pair of rows of our correlation matrix.
See https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html.

	Parameters:

	
	x – first input array.

	y – second input array.

	opt – “optimized.” If False, drop missing values when either the x or y value is null/nan. If True,
we’ve already replaced nan’s with 0’s for entire datafile.

	Returns:

	As per scipy, tuple of Pearson’s correlation coefficient and Two-tailed p-value.

	
gretel_synthetics.utils.stats.calculate_theils_u(x, y)

	Calculates Theil’s U statistic (Uncertainty coefficient) for categorical-categorical association.
Used in constructing correlation matrix.
See http://shakedzy.xyz/dython/modules/nominal/#theils_u.

	Parameters:

	
	x – first input array, categorical.

	y – second input array, categorical.

	Returns:

	float in the range of [0,1].

	
gretel_synthetics.utils.stats.compute_distribution_distance(d1: dict, d2: dict) → float

	Calculates the Jensen Shannon distance between two distributions.

	Parameters:

	
	d1 – Distribution dict. Values must be a probability vector
(all values are floats in [0,1], sum of all values is 1.0).

	d2 – Another distribution dict.

	Returns:

	The distance between the two vectors, range in [0, 1].

	Return type:

	float

	
gretel_synthetics.utils.stats.compute_pca(df: DataFrame, n_components: int = 2) → DataFrame

	Do PCA on a dataframe. See https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.

	Parameters:

	
	df – The dataframe to analyze for principal components.

	n_components – Number of components to keep.

	Returns:

	Dataframe of principal components.

	
gretel_synthetics.utils.stats.count_memorized_lines(df1: DataFrame, df2: DataFrame) → int

	Checks for overlap between training and synthesized data.

	Parameters:

	
	df1 – DataFrame of training data.

	df2 – DataFrame of synthetic data.

	Returns:

	int, the number of overlapping elements.

	
gretel_synthetics.utils.stats.get_categorical_field_distribution(field: Series) → dict

	Calculates the normalized distribution of a categorical field.

	Parameters:

	field – A sanitized column extracted from one of the df’s.

	Returns:

	keys are the unique values in the field, values are percentages (floats in [0, 100]).

	Return type:

	dict

	
gretel_synthetics.utils.stats.get_numeric_distribution_bins(training: Series, synthetic: Series)

	To calculate the distribution distance between two numeric series a la categorical fields
we need to bin the data. We want the same bins between both series, based on scrubbed data.

	Parameters:

	
	training – The numeric series from the training dataframe.

	synthetic – The numeric series from the synthetic dataframe.

	Returns:

	bin_edges, numpy array of dtype float

	
gretel_synthetics.utils.stats.get_numeric_field_distribution(field: Series, bins) → dict

	Calculates the normalized distribution of a numeric field cut into bins.

	Parameters:

	
	field – A sanitized column extracted from one of the df’s.

	bins – Usually an np.ndarray from get_bins, but can be anything that can be safely passed to pandas.cut.

	Returns:

	keys are the unique values in the field, values are floats in [0, 1].

	Return type:

	dict

	
gretel_synthetics.utils.stats.normalize_dataset(df: DataFrame) → DataFrame

	Prep a dataframe for PCA. Divide the dataframe into numeric and categorical,
fill missing values and encode categorical columns by the frequency of each value and
standardize all values.

	Parameters:

	df – The dataframe to be subjected to PCA.

	Returns:

	The dataframe, normalized.

Header Clusters

	
gretel_synthetics.utils.header_clusters.cluster(df: DataFrame, header_prefix: List[str] | None = None, maxsize: int = 20, average_record_length_threshold: float = 0, method: str = 'single', numeric_cat: List[str] | None = None, plot: bool = False, isolate_complex_field: bool = True) → List[List[str]]

	Given an input dataframe, extract clusters of similar headers
based on a set of heuristics.
:param df: The dataframe to cluster headers from.
:param header_prefix: List of columns to remove before cluster generation.
:param maxsize: The max number of fields in a cluster.
:param average_record_length_threshold: Threshold for how long a cluster’s records can be.

The default, 0, turns off the average record length (arl) logic. To use arl,
use a positive value. Based on our research we recommend setting this value
to 250.0.

	Parameters:

	
	method – Linkage method used to compute header cluster
distances. For more information please refer to the scipy
docs, https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy-cluster-hierarchy-linkage. # noqa

	numeric_cat – A list of fields to define as categorical. The header
clustering code will automatically define pandas “object” and
“category” columns as categorical. The numeric_cat parameter
may be used to define additional categorical fields that may
not automatically get identified as such.

	plot – Plot header list as a dendogram.

	isolate_complex_field – Enables isolation of complex fields when clustering.

	Returns:

	A list of lists of column names, each column name list being an identified cluster.

Timeseries DGAN

The Timeseries DGAN module contains a PyTorch implementation of the DoppelGANger
model, see https://arxiv.org/abs/1909.13403 for a detailed description of the
model.

import numpy as np
 from gretel_synthetics.timeseries_dgan.dgan import DGAN
 from gretel_synthetics.timeseries_dgan.config import DGANConfig

 attributes = np.random.rand(10000, 3)
 features = np.random.rand(10000, 20, 2)

 config = DGANConfig(
 max_sequence_len=20,
 sample_len=5,
 batch_size=1000,
 epochs=10
)
 model = DGAN(config)

 model.train(attributes, features)

 synthetic_attributes, synthetic_features = model.generate(1000)

	
class gretel_synthetics.timeseries_dgan.config.DGANConfig(max_sequence_len: int, sample_len: int, attribute_noise_dim: int = 10, feature_noise_dim: int = 10, attribute_num_layers: int = 3, attribute_num_units: int = 100, feature_num_layers: int = 1, feature_num_units: int = 100, use_attribute_discriminator: bool = True, normalization: Normalization = Normalization.ZERO_ONE, apply_feature_scaling: bool = True, apply_example_scaling: bool = True, binary_encoder_cutoff: int = 150, forget_bias: bool = False, gradient_penalty_coef: float = 10.0, attribute_gradient_penalty_coef: float = 10.0, attribute_loss_coef: float = 1.0, generator_learning_rate: float = 0.001, generator_beta1: float = 0.5, discriminator_learning_rate: float = 0.001, discriminator_beta1: float = 0.5, attribute_discriminator_learning_rate: float = 0.001, attribute_discriminator_beta1: float = 0.5, batch_size: int = 1024, epochs: int = 400, discriminator_rounds: int = 1, generator_rounds: int = 1, cuda: bool = True, mixed_precision_training: bool = False)

	Config object with parameters for training a DGAN model.

	Parameters:

	
	max_sequence_len – length of time series sequences, variable length
sequences are not supported, so all training and generated data will
have the same length sequences

	sample_len – time series steps to generate from each LSTM cell in DGAN,
must be a divisor of max_sequence_len

	attribute_noise_dim – length of the GAN noise vectors for attribute
generation

	feature_noise_dim – length of GAN noise vectors for feature generation

	attribute_num_layers – # of layers in the GAN discriminator network

	attribute_num_units – # of units per layer in the GAN discriminator
network

	feature_num_layers – # of LSTM layers in the GAN generator network

	feature_num_units – # of units per layer in the GAN generator network

	use_attribute_discriminator – use separaste discriminator only on
attributes, helps DGAN match attribute distributions, Default: True

	normalization – default normalization for continuous variables, used when
metadata output is not specified during DGAN initialization

	apply_feature_scaling – scale each continuous variable to [0,1] or [-1,1]
(based on normalization param) before training and rescale to
original range during generation, if False then training data must
be within range and DGAN will only generate values in [0,1] or
[-1,1], Default: True

	apply_example_scaling – compute midpoint and halfrange (equivalent to
min/max) for each time series variable and include these as
additional attributes that are generated, this provides better
support for time series with highly variable ranges, e.g., in
network data, a dial-up connection has bandwidth usage in [1kb,
10kb], while a fiber connection is in [100mb, 1gb], Default: True

	binary_encoder_cutoff – use binary encoder (instead of one hot encoder) for
any column with more than this many unique values. This helps reduce memory
consumption for datasets with a lot of unique values.

	forget_bias – initialize forget gate bias paramters to 1 in LSTM layers,
when True initialization matches tf1 LSTMCell behavior, otherwise
default pytorch initialization is used, Default: False

	gradient_penalty_coef – coefficient for gradient penalty in Wasserstein
loss, Default: 10.0

	attribute_gradient_penalty_coef – coefficient for gradient penalty in
Wasserstein loss for the attribute discriminator, Default: 10.0

	attribute_loss_coef – coefficient for attribute discriminator loss in
comparison the standard discriminator on attributes and features,
higher values should encourage DGAN to learn attribute
distributions, Default: 1.0

	generator_learning_rate – learning rate for Adam optimizer

	generator_beta1 – Adam param for exponential decay of 1st moment

	discriminator_learning_rate – learning rate for Adam optimizer

	discriminator_beta1 – Adam param for exponential decay of 1st moment

	attribute_discriminator_learning_rate – learning rate for Adam optimizer

	attribute_discriminator_beta1 – Adam param for exponential decay of 1st
moment

	batch_size – # of examples used in batches, for both training and
generation

	epochs – # of epochs to train model discriminator_rounds: training steps

	discriminator (for the) – batch

	generator_rounds – training steps for the generator in each batch

	cuda – use GPU if available

	mixed_precision_training – enabling automatic mixed precision while training
in order to reduce memory costs, bandwith, and time by identifying the
steps that require full precision and using 32-bit floating point for
only those steps while using 16-bit floating point everywhere else.

	
to_dict()

	Return dictionary representation of DGANConfig.

	Returns:

	Dictionary of member variables, usable to initialize a new config
object, e.g., DGANConfig(**config.to_dict())

	
class gretel_synthetics.timeseries_dgan.config.DfStyle(value)

	Supported styles for parsing pandas DataFrames.

See train_dataframe method in dgan.py for details.

	
class gretel_synthetics.timeseries_dgan.config.Normalization(value)

	Normalization types for continuous variables.

Determines if a sigmoid (ZERO_ONE) or tanh (MINUSONE_ONE) activation is used
for the output layers in the generation network.

	
class gretel_synthetics.timeseries_dgan.config.OutputType(value)

	Supported variables types.

Determines internal representation of variables and output layers in
generation network.

PyTorch implementation of DoppelGANger, from https://arxiv.org/abs/1909.13403

Based on tensorflow 1 code in https://github.com/fjxmlzn/DoppelGANger

DoppelGANger is a generative adversarial network (GAN) model for time series. It
supports multi-variate time series (referred to as features) and fixed variables
for each time series (attributes). The combination of attribute values and
sequence of feature values is 1 example. Once trained, the model can generate
novel examples that exhibit the same temporal correlations as seen in the
training data. See https://arxiv.org/abs/1909.13403 for additional details on
the model.

As a reference for terminology, consider open-high-low-close (OHLC) data from
stock markets. Each stock is an example, with fixed attributes such as exchange,
sector, country. The features or time series consists of open, high, low, and
closing prices for each time interval (daily). After being trained on historical
data, the model can generate more hypothetical stocks and price behavior on the
training time range.

Sample usage:

import numpy as np
from gretel_synthetics.timeseries_dgan.dgan import DGAN
from gretel_synthetics.timeseries_dgan.config import DGANConfig

attributes = np.random.rand(10000, 3)
features = np.random.rand(10000, 20, 2)

config = DGANConfig(
 max_sequence_len=20,
 sample_len=5,
 batch_size=1000,
 epochs=10
)

model = DGAN(config)

model.train_numpy(attributes=attributes, features=features)

synthetic_attributes, synthetic_features = model.generate_numpy(1000)

	
class gretel_synthetics.timeseries_dgan.dgan.DGAN(config: DGANConfig, attribute_outputs: List[Output] | None = None, feature_outputs: List[Output] | None = None)

	DoppelGANger model.

Interface for training model and generating data based on configuration in
an DGANConfig instance.

DoppelGANger uses a specific internal representation for data which is
hidden from the user in the public interface. Standard usage of DGAN
instances should pass continuous variables as floats in the original space
(not normalized), and discrete variables may be strings, integers, or
floats. This is the format expected by both train_numpy() and
train_dataframe() and the generate_numpy() and generate_dataframe()
functions will return data in this same format. In standard usage, the
detailed transformation info in attribute_outputs and feature_outputs are
not needed, those will be created automatically when a train* function is
called with data.

If more control is needed and you want to use the normalized values and
one-hot encoding directly, use the _train() and _generate() functions.
transformations.py contains internal helper functions for working with the
Output metadata instances and converting data to and from the internal
representation. To dive even deeper into the model structure, see the
torch_modules.py which contains the torch implementations of the networks
used in DGAN. As internal details, transformations.py and torch_modules.py
are not part of the public interface and may change at any time without
notice.

	
__init__(config: DGANConfig, attribute_outputs: List[Output] | None = None, feature_outputs: List[Output] | None = None)

	Create a DoppelGANger model.

	Parameters:

	
	config – DGANConfig containing model parameters

	attribute_outputs – custom metadata for attributes, not needed for
standard usage

	feature_outputs – custom metadata for features, not needed for
standard usage

	
generate_dataframe(n: int | None = None, attribute_noise: Tensor | None = None, feature_noise: Tensor | None = None) → DataFrame

	Generate synthetic data from DGAN model.

Once trained, a DGAN model can generate arbitrary amounts of
synthetic data by sampling from the noise distributions. Specify either
the number of records to generate, or the specific noise vectors to use.

	Parameters:

	
	n – number of examples to generate

	attribute_noise – noise vectors to create synthetic data

	feature_noise – noise vectors to create synthetic data

	Returns:

	pandas DataFrame in same format used in ‘train_dataframe’ call

	
generate_numpy(n: int | None = None, attribute_noise: Tensor | None = None, feature_noise: Tensor | None = None) → Tuple[ndarray | None, ndarray]

	Generate synthetic data from DGAN model.

Once trained, a DGAN model can generate arbitrary amounts of
synthetic data by sampling from the noise distributions. Specify either
the number of records to generate, or the specific noise vectors to use.

	Parameters:

	
	n – number of examples to generate

	attribute_noise – noise vectors to create synthetic data

	feature_noise – noise vectors to create synthetic data

	Returns:

	Tuple of attributes and features as numpy arrays.

	
classmethod load(file_name: str, **kwargs) → DGAN

	Load DGAN model instance from a file.

	Parameters:

	
	file_name – location to load from

	kwargs – additional parameters passed to torch.load, for example, use
map_location=torch.device(“cpu”) to load a model saved for GPU on
a machine without cuda

	Returns:

	DGAN model instance

	
save(file_name: str, **kwargs)

	Save DGAN model to a file.

	Parameters:

	
	file_name – location to save serialized model

	kwargs – additional parameters passed to torch.save

	
train_dataframe(df: DataFrame, attribute_columns: List[str] | None = None, feature_columns: List[str] | None = None, example_id_column: str | None = None, time_column: str | None = None, discrete_columns: List[str] | None = None, df_style: DfStyle = DfStyle.WIDE, progress_callback: Callable[[ProgressInfo], None] | None = None) → None

	Train DGAN model on data in pandas DataFrame.

Training data can be in either “wide” or “long” format. “Wide” format
uses one row for each example with 0 or more attribute columns and 1
column per time point in the time series. “Wide” format is restricted to
1 feature variable. “Long” format uses one row per time point, supports
multiple feature variables, and uses additional example id to split into
examples and time column to sort.

	Parameters:

	
	df – DataFrame of training data

	attribute_columns – list of column names containing attributes, if None,
no attribute columns are used. Must be disjoint from
the feature columns.

	feature_columns – list of column names containing features, if None
all non-attribute columns are used. Must be disjoint from
attribute columns.

	example_id_column – column name used to split “long” format data
frame into multiple examples, if None, data is treated as a
single example. This value must be unique from the other
column list parameters.

	time_column – column name used to sort “long” format data frame,
if None, data frame order of rows/time points is used. This
value must be unique from the other column list parameters.

	discrete_columns – column names (either attributes or features) to
treat as discrete (use one-hot or binary encoding), any string
or object columns are automatically treated as discrete

	df_style – str enum of “wide” or “long” indicating format of the
DataFrame

	
train_numpy(features: ndarray, feature_types: List[OutputType] | None = None, attributes: ndarray | None = None, attribute_types: List[OutputType] | None = None, progress_callback: Callable[[ProgressInfo], None] | None = None) → None

	Train DGAN model on data in numpy arrays.

Training data is passed in 2 numpy arrays, one for attributes (2d) and
one for features (3d). This data should be in the original space and is
not transformed. If the data is already transformed into the internal
DGAN representation (continuous variable scaled to [0,1] or [-1,1] and
discrete variables one-hot or binary encoded), use the internal _train()
function instead of train_numpy().

In standard usage, attribute_types and feature_types may be provided on
the first call to train() to setup the model structure. If not
specified, the default is to assume continuous variables for floats and
integers, and discrete for strings. If outputs metadata was specified
when the instance was initialized or train() was previously called, then
attribute_types and feature_types are not needed.

	Parameters:

	
	features – 3-d numpy array of time series features for the training,
size is (# of training examples) X max_sequence_len X (# of
features)

	feature_types (Optional) – Specification of Discrete or Continuous
type for each variable of the features. If None, assume
continuous variables for floats and integers, and discrete for
strings. Ignored if the model was already built, either by
passing output params at initialization or because train_ was
called previously.

	attributes (Optional) – 2-d numpy array of attributes for the training
examples, size is (# of training examples) X (# of attributes)

	attribute_types (Optional) – Specification of Discrete or Continuous
type for each variable of the attributes. If None, assume
continuous variables for floats and integers, and discrete for
strings. Ignored if the model was already built, either by
passing output params at initialization or because train_ was
called previously.

	
gretel_synthetics.timeseries_dgan.dgan.find_max_consecutive_nans(array: array) → int

	Returns the maximum number of consecutive NaNs in an array.

	Parameters:

	array – 1-d numpy array of time series per example.

	Returns:

	The maximum number of consecutive NaNs in a times series array.

	Return type:

	max_cons_nan

	
gretel_synthetics.timeseries_dgan.dgan.nan_linear_interpolation(arrays: ndarray) → ndarray

	Replaces all NaNs via linear interpolation.

	Parameters:

	
	arrays – 3-d numpy array of continuous features, with shape

	(#examples –

	max_sequence_length –

	features) (#continuous) –

	Returns:

	3-d numpy array where NaNs are replaced via
linear interpolation.

	Return type:

	arrays

	
gretel_synthetics.timeseries_dgan.dgan.validation_check(array: ndarray, invalid_examples_ratio_cutoff: float = 0.5, nans_ratio_cutoff: float = 0.1, consecutive_nans_max: int = 5, consecutive_nans_ratio_cutoff: float = 0.05) → array

	Checks if continuous features of examples are valid.

Returns a 1-d numpy array of booleans with shape (#examples) indicating
valid examples.
Examples with continuous features fall into 3 categories: good, valid (fixable) and
invalid (non-fixable).
- “Good” examples have no NaNs.
- “Valid” examples have a low percentage of nans and a below a threshold number of
consecutive NaNs.
- “Invalid” are the rest, and are marked “False” in the returned array. Later on,
these are omitted from training. If there are too many, later, we error out.

	Parameters:

	
	array – 3-d numpy array of continuous features with

	shape (#examples,max_sequence_length, #continuous features) –

	invalid_examples_ratio_cutoff – Error out if the invalid examples ratio in the dataset

	value. (is higher than this) –

	nans_ratio_cutoff – If the percentage of nans for any continuous feature in an example

	value (is greater than this) –

	invalid. (then the example is) –

	consecutive_nans_max – If the maximum number of consecutive nans in a continuous

	number (feature is greater than this) –

	invalid. –

	consecutive_nans_ratio_cutoff – If the maximum number of consecutive nans in a

	example (continuous feature is greater than this ratio times the length of the) –

	samples) ((number) –

	invalid. –

	Returns:

	1-d numpy array of booleans indicating valid examples with
shape (#examples).

	Return type:

	valid_examples

ACTGAN

The ACTGAN sub-package contains an alternate implementation of the SDV CTGAN model. It
provides some improvement and automation around automatic detection of datetime fields
and optional usage of a binary encoder for discrete columns for better memory usage.

Please see the “ACTGAN_Demo” Notebook in the “examples” directory in the repository root.

Wrapper around ACTGAN model.

	
class gretel_synthetics.actgan.actgan_wrapper.ACTGAN(field_names: List[str] | None = None, field_types: Dict[str, dict] | None = None, field_transformers: Dict[str, BaseTransformer | str] | None = None, auto_transform_datetimes: bool = False, anonymize_fields: Dict[str, str] | None = None, primary_key: str | None = None, constraints: List[Constraint] | List[dict] | None = None, table_metadata: Metadata | dict | None = None, embedding_dim: int = 128, generator_dim: Sequence[int] = (256, 256), discriminator_dim: Sequence[int] = (256, 256), generator_lr: float = 0.0002, generator_decay: float = 1e-06, discriminator_lr: float = 0.0002, discriminator_decay: float = 1e-06, batch_size: int = 500, discriminator_steps: int = 1, binary_encoder_cutoff: int = 500, binary_encoder_nan_handler: str | None = None, cbn_sample_size: int | None = 250000, log_frequency: bool = True, verbose: bool = False, epochs: int = 300, epoch_callback: Callable[[EpochInfo], None] | None = None, pac: int = 10, cuda: bool = True, learn_rounding_scheme: bool = True, enforce_min_max_values: bool = True, conditional_vector_type: ConditionalVectorType = ConditionalVectorType.SINGLE_DISCRETE, conditional_select_mean_columns: float | None = None, conditional_select_column_prob: float | None = None, reconstruction_loss_coef: float = 1.0, force_conditioning: bool = False)

	
	Parameters:

	
	field_names – List of names of the fields that need to be modeled
and included in the generated output data. Any additional
fields found in the data will be ignored and will not be
included in the generated output.
If None, all the fields found in the data are used.

	field_types – Dictinary specifying the data types and subtypes
of the fields that will be modeled. Field types and subtypes
combinations must be compatible with the SDV Metadata Schema.

	field_transformers – Dictinary specifying which transformers to use for each field.
Available transformers are:

	FloatFormatter: Uses a FloatFormatter for numerical data.

	FrequencyEncoder: Uses a FrequencyEncoder without gaussian noise.

	FrequencyEncoder_noised: Uses a FrequencyEncoder adding gaussian noise.

	OneHotEncoder: Uses a OneHotEncoder.

	LabelEncoder: Uses a LabelEncoder without gaussian nose.

	LabelEncoder_noised: Uses a LabelEncoder adding gaussian noise.

	BinaryEncoder: Uses a BinaryEncoder.

	UnixTimestampEncoder: Uses a UnixTimestampEncoder.

NOTE: Specifically for ACTGAN, some attributes such as auto_transform_datetimes will
automatically attempt to detect field types and will automatically set the field_transformers
dictionary at construction time. However, autodetection of field_types and field_transformers
will not be over-written by any concrete values that were provided to this constructor.

	auto_transform_datetimes – If set, prior to fitting, each column will be checked for
being a potential “datetime” type. For each column that is discovered as a “datetime” the
field_types and field_transformers SDV metadata dicts will be automatically updated
such that datetimes are transformed to Unix timestamps. NOTE: if fields are already
specified in field_types or field_transformers these fields will be skipped
by the auto detector.

	anonymize_fields – Dict specifying which fields to anonymize and what faker
category they belong to.

	primary_key – Name of the field which is the primary key of the table.

	constraints – List of Constraint objects or dicts.

	table_metadata – Table metadata instance or dict representation.
If given alongside any other metadata-related arguments, an
exception will be raised.
If not given at all, it will be built using the other
arguments or learned from the data.

	embedding_dim – Size of the random sample passed to the Generator. Defaults to 128.

	generator_dim – Size of the output samples for each one of the Residuals. A Residual Layer
will be created for each one of the values provided. Defaults to (256, 256).

	discriminator_dim – Size of the output samples for each one of the Discriminator Layers. A Linear Layer
will be created for each one of the values provided. Defaults to (256, 256).

	generator_lr – Learning rate for the generator. Defaults to 2e-4.

	generator_decay – Generator weight decay for the Adam Optimizer. Defaults to 1e-6.

	discriminator_lr – Learning rate for the discriminator. Defaults to 2e-4.

	discriminator_decay – Discriminator weight decay for the Adam Optimizer. Defaults to 1e-6.

	batch_size – Number of data samples to process in each step.

	discriminator_steps – Number of discriminator updates to do for each generator update.
From the WGAN paper: https://arxiv.org/abs/1701.07875. WGAN paper
default is 5. Default used is 1 to match original CTGAN implementation.

	binary_encoder_cutoff – For any given column, the number of unique values that should exist before
switching over to binary encoding instead of OHE. This will help reduce
memory consumption for datasets with a lot of unique values.

	binary_encoder_nan_handler – Binary encoding currently may produce errant NaN values during reverse transformation. By default
these NaN’s will be left in place, however if this value is set to “mode” then those NaN’ will
be replaced by a random value that is a known mode for a given column.

	cbn_sample_size – Number of rows to sample from each column for identifying clusters for the cluster-based normalizer.
This only applies to float columns. If set to 0, no sampling is done and all values are considered,
which may be very slow. Defaults to 250_000.

	log_frequency – Whether to use log frequency of categorical levels in conditional
sampling. Defaults to True.

	verbose – Whether to have print statements for progress results. Defaults to False.

	epochs – Number of training epochs. Defaults to 300.

	epoch_callback – An optional function to call after each epoch, the argument will be a
EpochInfo instance

	pac – Number of samples to group together when applying the discriminator.
Defaults to 10.

	cuda – If True, use CUDA. If a str, use the indicated device.
If False, do not use cuda at all. Defaults to True.

	learn_rounding_scheme – Define rounding scheme for FloatFormatter. If True, the data returned by
reverse_transform will be rounded to that place. Defaults to True.

	enforce_min_max_values – Specify whether or not to clip the data returned by reverse_transform of
the numerical transformer, FloatFormatter, to the min and max values seen
during fit. Defaults to True.

	conditional_vector_type – Type of conditional vector to include in input to the generator.
Influences how effective and flexible the native conditional
generation is. Options include SINGLE_DISCRETE (original CTGAN
setup) and ANYWAY. Default is SINGLE_DISCRETE.

	conditional_select_mean_columns – Target number of columns to select for conditioning on average
during training. Only used for ANYWAY conditioning. Use if typical
number of columns to seed on is known. If set,
conditional_select_column_prob must be None. Equivalent to setting
conditional_select_column_prob to conditional_select_mean_columns /
of columns. Defaults to None.

	conditional_select_column_prob – Probability to select any given column to be conditioned on during
training. Only used for ANYWAY conditioning. If set,
conditional_select_mean_columns must be None. Defaults to None.

	reconstruction_loss_coef – Multiplier on reconstruction loss, higher values focus the generator
optimization more on accurate conditional vector generation.
Defaults to 1.0.

	force_conditioning – Directly set the requested conditional generation columns in
generated data. Will bypass rejection sampling and be faster, but
may reduce quality of the generated data and correlations between
conditioned columns and other variables may be weaker. Defaults to
False.

	
fit(*args, **kwargs)

	Fit the ACTGAN model to the provided data. Prior to fitting,
specific auto-detection of data types will be done if the
provided data is a DataFrame.

	
sample(*args, **kwargs)

	Sample rows from this table.

	Parameters:

	
	num_rows (int) – Number of rows to sample. This parameter is required.

	randomize_samples (bool) – Whether or not to use a fixed seed when sampling. Defaults
to True.

	max_tries_per_batch (int) – Number of times to retry sampling until the batch size is met. Defaults to 100.

	batch_size (int or None) – The batch size to sample. Defaults to num_rows, if None.

	output_file_path (str or None) – The file to periodically write sampled rows to. If None, does not
write rows anywhere.

	conditions – Deprecated argument. Use the sample_conditions method with
sdv.sampling.Condition objects instead.

	Returns:

	Sampled data.

	Return type:

	pandas.DataFrame

	
sample_remaining_columns(*args, **kwargs)

	Sample rows from this table.

	Parameters:

	
	known_columns (pandas.DataFrame) – A pandas.DataFrame with the columns that are already known. The output
is a DataFrame such that each row in the output is sampled
conditionally on the corresponding row in the input.

	max_tries_per_batch (int) – Number of times to retry sampling until the batch size is met. Defaults to 100.

	batch_size (int) – The batch size to use per sampling call.

	randomize_samples (bool) – Whether or not to use a fixed seed when sampling. Defaults
to True.

	output_file_path (str or None) – The file to periodically write sampled rows to. Defaults to
a temporary file, if None.

	Returns:

	Sampled data.

	Return type:

	pandas.DataFrame

	Raises:

	
	ConstraintsNotMetError – If the conditions are not valid for the given constraints.

	ValueError – If any of the following happens:
 * any of the conditions’ columns are not valid.
 * no rows could be generated.

Complex datastructures for ACTGAN

	
class gretel_synthetics.actgan.structures.ColumnIdInfo(discrete_column_id: 'int', column_id: 'int', value_id: 'np.ndarray')

	

	
class gretel_synthetics.actgan.structures.ColumnTransformInfo(column_name: 'str', column_type: 'ColumnType', transform: 'BaseTransformer', encodings: 'List[ColumnEncoding]')

	

	
class gretel_synthetics.actgan.structures.ColumnType(value)

	An enumeration.

	
class gretel_synthetics.actgan.structures.ConditionalVectorType(value)

	An enumeration.

	
class gretel_synthetics.actgan.structures.EpochInfo(epoch: int, loss_g: float, loss_d: float, loss_r: float)

	When creating a model such as ACTGAN if the epoch_callback attribute is set to
a callable, then after each epoch the provided callable will be called with
an instance of this class as the only argument.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gretel_synthetics	

 	
 	
 gretel_synthetics.actgan.actgan_wrapper	

 	
 	
 gretel_synthetics.actgan.structures	

 	
 	
 gretel_synthetics.batch	

 	
 	
 gretel_synthetics.config	

 	
 	
 gretel_synthetics.generate	

 	
 	
 gretel_synthetics.timeseries_dgan.config	

 	
 	
 gretel_synthetics.timeseries_dgan.dgan	

 	
 	
 gretel_synthetics.tokenizers	

 	
 	
 gretel_synthetics.train	

 	
 	
 gretel_synthetics.utils.header_clusters	

 	
 	
 gretel_synthetics.utils.stats	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V

_

 	
 	__init__() (gretel_synthetics.timeseries_dgan.dgan.DGAN method)

A

 	
 	ACTGAN (class in gretel_synthetics.actgan.actgan_wrapper)

 	add_valid_data() (gretel_synthetics.batch.Batch method)

 	
 	annotate_data() (gretel_synthetics.tokenizers.BaseTokenizerTrainer method)

 	as_dict() (gretel_synthetics.config.BaseConfig method)

 	(gretel_synthetics.generate.gen_text method)

B

 	
 	Base (class in gretel_synthetics.tokenizers)

 	BaseConfig (class in gretel_synthetics.config)

 	BaseGenerator (class in gretel_synthetics.generate)

 	BaseTokenizer (class in gretel_synthetics.tokenizers)

 	BaseTokenizerTrainer (class in gretel_synthetics.tokenizers)

 	
 	Batch (class in gretel_synthetics.batch)

 	batch_size (gretel_synthetics.batch.DataFrameBatch attribute)

 	batch_to_df() (gretel_synthetics.batch.DataFrameBatch method)

 	batches (gretel_synthetics.batch.DataFrameBatch attribute)

 	batches_to_df() (gretel_synthetics.batch.DataFrameBatch method)

C

 	
 	calculate_correlation() (in module gretel_synthetics.utils.stats)

 	calculate_correlation_ratio() (in module gretel_synthetics.utils.stats)

 	calculate_pearsons_r() (in module gretel_synthetics.utils.stats)

 	calculate_theils_u() (in module gretel_synthetics.utils.stats)

 	character_coverage (gretel_synthetics.tokenizers.SentencePieceTokenizerTrainer attribute)

 	CharTokenizer (class in gretel_synthetics.tokenizers)

 	CharTokenizerTrainer (class in gretel_synthetics.tokenizers)

 	checkpoint_dir (gretel_synthetics.config.BaseConfig attribute)

 	cluster() (in module gretel_synthetics.utils.header_clusters)

 	ColumnIdInfo (class in gretel_synthetics.actgan.structures)

 	ColumnTransformInfo (class in gretel_synthetics.actgan.structures)

 	ColumnType (class in gretel_synthetics.actgan.structures)

 	
 	completion_percent (gretel_synthetics.batch.GenerationProgress attribute)

 	compute_distribution_distance() (in module gretel_synthetics.utils.stats)

 	compute_pca() (in module gretel_synthetics.utils.stats)

 	ConditionalVectorType (class in gretel_synthetics.actgan.structures)

 	config (gretel_synthetics.batch.DataFrameBatch attribute)

 	(gretel_synthetics.tokenizers.BaseTokenizerTrainer attribute)

 	config_from_model_dir() (in module gretel_synthetics.config)

 	CONFIG_MAP (in module gretel_synthetics.config)

 	count_memorized_lines() (in module gretel_synthetics.utils.stats)

 	create_training_data() (gretel_synthetics.batch.DataFrameBatch method)

 	current_invalid_count (gretel_synthetics.batch.GenerationProgress attribute)

 	current_valid_count (gretel_synthetics.batch.GenerationProgress attribute)

D

 	
 	data_iterator() (gretel_synthetics.tokenizers.BaseTokenizerTrainer method)

 	DataFrameBatch (class in gretel_synthetics.batch)

 	decode_from_ids() (gretel_synthetics.tokenizers.BaseTokenizer method)

 	
 	delimiter (gretel_synthetics.generate.gen_text attribute)

 	DfStyle (class in gretel_synthetics.timeseries_dgan.config)

 	DGAN (class in gretel_synthetics.timeseries_dgan.dgan)

 	DGANConfig (class in gretel_synthetics.timeseries_dgan.config)

E

 	
 	encode_to_ids() (gretel_synthetics.tokenizers.BaseTokenizer method)

 	epoch_callback (gretel_synthetics.config.BaseConfig attribute)

 	
 	EpochInfo (class in gretel_synthetics.actgan.structures)

 	EpochState (class in gretel_synthetics.train)

 	explain (gretel_synthetics.generate.gen_text attribute)

F

 	
 	field_delimiter (gretel_synthetics.config.BaseConfig attribute)

 	field_delimiter_token (gretel_synthetics.config.BaseConfig attribute)

 	
 	find_max_consecutive_nans() (in module gretel_synthetics.timeseries_dgan.dgan)

 	fit() (gretel_synthetics.actgan.actgan_wrapper.ACTGAN method)

G

 	
 	gen_text (class in gretel_synthetics.generate)

 	generate_all() (gretel_synthetics.batch.RecordFactory method)

 	generate_all_batch_lines() (gretel_synthetics.batch.DataFrameBatch method)

 	generate_batch_lines() (gretel_synthetics.batch.DataFrameBatch method)

 	generate_dataframe() (gretel_synthetics.timeseries_dgan.dgan.DGAN method)

 	generate_numpy() (gretel_synthetics.timeseries_dgan.dgan.DGAN method)

 	generate_text() (in module gretel_synthetics.generate)

 	GenerationProgress (class in gretel_synthetics.batch)

 	GenerationResult (class in gretel_synthetics.batch)

 	GenerationSummary (class in gretel_synthetics.batch)

 	GenText (class in gretel_synthetics.generate)

 	get_categorical_field_distribution() (in module gretel_synthetics.utils.stats)

 	get_generator_class() (gretel_synthetics.config.BaseConfig method)

 	(gretel_synthetics.config.TensorFlowConfig method)

 	get_numeric_distribution_bins() (in module gretel_synthetics.utils.stats)

 	get_numeric_field_distribution() (in module gretel_synthetics.utils.stats)

 	get_training_callable() (gretel_synthetics.config.BaseConfig method)

 	(gretel_synthetics.config.TensorFlowConfig method)

 	get_validator() (gretel_synthetics.batch.Batch method)

 	gpu_check() (gretel_synthetics.config.BaseConfig method)

 	(gretel_synthetics.config.TensorFlowConfig method)

 	
 	
 gretel_synthetics.actgan.actgan_wrapper

 	module

 	
 gretel_synthetics.actgan.structures

 	module

 	
 gretel_synthetics.batch

 	module

 	
 gretel_synthetics.config

 	module

 	
 gretel_synthetics.generate

 	module

 	
 gretel_synthetics.timeseries_dgan.config

 	module

 	
 gretel_synthetics.timeseries_dgan.dgan

 	module

 	
 gretel_synthetics.tokenizers

 	module

 	
 gretel_synthetics.train

 	module

 	
 gretel_synthetics.utils.header_clusters

 	module

 	
 gretel_synthetics.utils.stats

 	module

I

 	
 	input_data_path (gretel_synthetics.config.BaseConfig attribute)

L

 	
 	load() (gretel_synthetics.timeseries_dgan.dgan.DGAN class method)

 	(gretel_synthetics.tokenizers.BaseTokenizer class method)

 	(gretel_synthetics.tokenizers.CharTokenizer class method)

 	(gretel_synthetics.tokenizers.SentencePieceTokenizer class method)

 	
 	load_validator_from_file() (gretel_synthetics.batch.Batch method)

 	LocalConfig (in module gretel_synthetics.config)

M

 	
 	master_header_list (gretel_synthetics.batch.DataFrameBatch attribute)

 	max_line_line (gretel_synthetics.tokenizers.SentencePieceTokenizerTrainer attribute)

 	max_lines (gretel_synthetics.config.BaseConfig attribute)

 	max_training_time_seconds (gretel_synthetics.config.BaseConfig attribute)

 	model_type (gretel_synthetics.config.BaseConfig attribute)

 	
 module

 	gretel_synthetics.actgan.actgan_wrapper

 	gretel_synthetics.actgan.structures

 	gretel_synthetics.batch

 	gretel_synthetics.config

 	gretel_synthetics.generate

 	gretel_synthetics.timeseries_dgan.config

 	gretel_synthetics.timeseries_dgan.dgan

 	gretel_synthetics.tokenizers

 	gretel_synthetics.train

 	gretel_synthetics.utils.header_clusters

 	gretel_synthetics.utils.stats

N

 	
 	nan_linear_interpolation() (in module gretel_synthetics.timeseries_dgan.dgan)

 	new_invalid_count (gretel_synthetics.batch.GenerationProgress attribute)

 	new_valid_count (gretel_synthetics.batch.GenerationProgress attribute)

 	
 	Normalization (class in gretel_synthetics.timeseries_dgan.config)

 	normalize_dataset() (in module gretel_synthetics.utils.stats)

 	num_lines (gretel_synthetics.tokenizers.BaseTokenizerTrainer attribute)

O

 	
 	original_headers (gretel_synthetics.batch.DataFrameBatch attribute)

 	
 	OutputType (class in gretel_synthetics.timeseries_dgan.config)

 	overwrite (gretel_synthetics.config.BaseConfig attribute)

P

 	
 	PredString (in module gretel_synthetics.generate)

 	
 	pretrain_sentence_count (gretel_synthetics.tokenizers.SentencePieceTokenizerTrainer attribute)

R

 	
 	RecordFactory (class in gretel_synthetics.batch)

 	
 	reset_gen_data() (gretel_synthetics.batch.Batch method)

S

 	
 	sample() (gretel_synthetics.actgan.actgan_wrapper.ACTGAN method)

 	sample_remaining_columns() (gretel_synthetics.actgan.actgan_wrapper.ACTGAN method)

 	save() (gretel_synthetics.timeseries_dgan.dgan.DGAN method)

 	SeedingGenerator (class in gretel_synthetics.generate)

 	SentencePieceColumnTokenizer (class in gretel_synthetics.tokenizers)

 	SentencePieceColumnTokenizerTrainer (class in gretel_synthetics.tokenizers)

 	
 	SentencePieceTokenizer (class in gretel_synthetics.tokenizers)

 	SentencePieceTokenizerTrainer (class in gretel_synthetics.tokenizers)

 	set_batch_validator() (gretel_synthetics.batch.DataFrameBatch method)

 	set_validator() (gretel_synthetics.batch.Batch method)

 	Settings (class in gretel_synthetics.generate)

 	synthetic_df (gretel_synthetics.batch.Batch property)

T

 	
 	TensorFlowConfig (class in gretel_synthetics.config)

 	text (gretel_synthetics.generate.gen_text attribute)

 	timestamp (gretel_synthetics.batch.GenerationProgress attribute)

 	to_dict() (gretel_synthetics.timeseries_dgan.config.DGANConfig method)

 	tokenizer_from_model_dir() (in module gretel_synthetics.tokenizers)

 	TokenizerError

 	total_vocab_size (gretel_synthetics.tokenizers.BaseTokenizer property)

 	(gretel_synthetics.tokenizers.CharTokenizer property)

 	(gretel_synthetics.tokenizers.SentencePieceTokenizer property)

 	
 	train() (gretel_synthetics.tokenizers.BaseTokenizerTrainer method)

 	(in module gretel_synthetics.train)

 	train_all_batches() (gretel_synthetics.batch.DataFrameBatch method)

 	train_batch() (gretel_synthetics.batch.DataFrameBatch method)

 	train_dataframe() (gretel_synthetics.timeseries_dgan.dgan.DGAN method)

 	train_numpy() (gretel_synthetics.timeseries_dgan.dgan.DGAN method)

 	train_rnn() (in module gretel_synthetics.train)

 	training_data_path (gretel_synthetics.config.BaseConfig attribute)

 	TrainingParams (class in gretel_synthetics.train)

V

 	
 	valid (gretel_synthetics.generate.gen_text attribute)

 	validation_check() (in module gretel_synthetics.timeseries_dgan.dgan)

 	validation_split (gretel_synthetics.config.BaseConfig attribute)

 	validator (gretel_synthetics.batch.RecordFactory attribute)

 	
 	values_as_list() (gretel_synthetics.generate.gen_text method)

 	vocab_size (gretel_synthetics.tokenizers.BaseTokenizerTrainer attribute)

 	(gretel_synthetics.tokenizers.SentencePieceTokenizerTrainer attribute)

 	VocabSizeTooSmall

 _static/minus.png

_static/plus.png

_static/file.png

_static/gretel_logo_white.png
IR
OIFCIE

_images/gretel-logo.png

nav.xhtml

 Table of Contents

 		
 Gretel Synthetics

 		
 Config

 		
 BaseConfig

 		
 BaseConfig.as_dict()

 		
 BaseConfig.checkpoint_dir

 		
 BaseConfig.epoch_callback

 		
 BaseConfig.field_delimiter

 		
 BaseConfig.field_delimiter_token

 		
 BaseConfig.get_generator_class()

 		
 BaseConfig.get_training_callable()

 		
 BaseConfig.gpu_check()

 		
 BaseConfig.input_data_path

 		
 BaseConfig.max_lines

 		
 BaseConfig.max_training_time_seconds

 		
 BaseConfig.model_type

 		
 BaseConfig.overwrite

 		
 BaseConfig.training_data_path

 		
 BaseConfig.validation_split

 		
 CONFIG_MAP

 		
 LocalConfig

 		
 TensorFlowConfig

 		
 TensorFlowConfig.get_generator_class()

 		
 TensorFlowConfig.get_training_callable()

 		
 TensorFlowConfig.gpu_check()

 		
 config_from_model_dir()

 		
 Tokenizers

 		
 Base

 		
 BaseTokenizer

 		
 BaseTokenizer.decode_from_ids()

 		
 BaseTokenizer.encode_to_ids()

 		
 BaseTokenizer.load()

 		
 BaseTokenizer.total_vocab_size

 		
 BaseTokenizerTrainer

 		
 BaseTokenizerTrainer.annotate_data()

 		
 BaseTokenizerTrainer.config

 		
 BaseTokenizerTrainer.data_iterator()

 		
 BaseTokenizerTrainer.num_lines

 		
 BaseTokenizerTrainer.train()

 		
 BaseTokenizerTrainer.vocab_size

 		
 CharTokenizer

 		
 CharTokenizer.load()

 		
 CharTokenizer.total_vocab_size

 		
 CharTokenizerTrainer

 		
 SentencePieceColumnTokenizer

 		
 SentencePieceColumnTokenizerTrainer

 		
 SentencePieceTokenizer

 		
 SentencePieceTokenizer.load()

 		
 SentencePieceTokenizer.total_vocab_size

 		
 SentencePieceTokenizerTrainer

 		
 SentencePieceTokenizerTrainer.character_coverage

 		
 SentencePieceTokenizerTrainer.max_line_line

 		
 SentencePieceTokenizerTrainer.pretrain_sentence_count

 		
 SentencePieceTokenizerTrainer.vocab_size

 		
 TokenizerError

 		
 VocabSizeTooSmall

 		
 tokenizer_from_model_dir()

 		
 Train

 		
 EpochState

 		
 TrainingParams

 		
 train()

 		
 train_rnn()

 		
 Generate

 		
 BaseGenerator

 		
 GenText

 		
 PredString

 		
 SeedingGenerator

 		
 Settings

 		
 gen_text

 		
 gen_text.valid

 		
 gen_text.text

 		
 gen_text.explain

 		
 gen_text.delimiter

 		
 gen_text.as_dict()

 		
 gen_text.values_as_list()

 		
 generate_text()

 		
 Batch

 		
 Batch

 		
 Batch.add_valid_data()

 		
 Batch.get_validator()

 		
 Batch.load_validator_from_file()

 		
 Batch.reset_gen_data()

 		
 Batch.set_validator()

 		
 Batch.synthetic_df

 		
 DataFrameBatch

 		
 DataFrameBatch.batch_size

 		
 DataFrameBatch.batch_to_df()

 		
 DataFrameBatch.batches

 		
 DataFrameBatch.batches_to_df()

 		
 DataFrameBatch.config

 		
 DataFrameBatch.create_training_data()

 		
 DataFrameBatch.generate_all_batch_lines()

 		
 DataFrameBatch.generate_batch_lines()

 		
 DataFrameBatch.master_header_list

 		
 DataFrameBatch.original_headers

 		
 DataFrameBatch.set_batch_validator()

 		
 DataFrameBatch.train_all_batches()

 		
 DataFrameBatch.train_batch()

 		
 GenerationProgress

 		
 GenerationProgress.completion_percent

 		
 GenerationProgress.current_invalid_count

 		
 GenerationProgress.current_valid_count

 		
 GenerationProgress.new_invalid_count

 		
 GenerationProgress.new_valid_count

 		
 GenerationProgress.timestamp

 		
 GenerationResult

 		
 GenerationSummary

 		
 RecordFactory

 		
 RecordFactory.generate_all()

 		
 RecordFactory.validator

 		
 Utils

 		
 Stats

 		
 calculate_correlation()

 		
 calculate_correlation_ratio()

 		
 calculate_pearsons_r()

 		
 calculate_theils_u()

 		
 compute_distribution_distance()

 		
 compute_pca()

 		
 count_memorized_lines()

 		
 get_categorical_field_distribution()

 		
 get_numeric_distribution_bins()

 		
 get_numeric_field_distribution()

 		
 normalize_dataset()

 		
 Header Clusters

 		
 cluster()

 		
 Timeseries DGAN

 		
 DGANConfig

 		
 DGANConfig.to_dict()

 		
 DfStyle

 		
 Normalization

 		
 OutputType

 		
 DGAN

 		
 DGAN.__init__()

 		
 DGAN.generate_dataframe()

 		
 DGAN.generate_numpy()

 		
 DGAN.load()

 		
 DGAN.save()

 		
 DGAN.train_dataframe()

 		
 DGAN.train_numpy()

 		
 find_max_consecutive_nans()

 		
 nan_linear_interpolation()

 		
 validation_check()

 		
 ACTGAN

 		
 ACTGAN

 		
 ACTGAN.fit()

 		
 ACTGAN.sample()

 		
 ACTGAN.sample_remaining_columns()

 		
 ColumnIdInfo

 		
 ColumnTransformInfo

 		
 ColumnType

 		
 ConditionalVectorType

 		
 EpochInfo

